Embodied Organization of Octopus vulgaris Morphology, Vision, and Locomotion
نویسندگان
چکیده
The rich motor behavior of Octopus vulgaris is an outstanding biological example of motor control in a soft-bodied animal. The flexible hyper-redundant arms of the octopus endow it with high maneuverability but also place a great burden on its control system. The main difficulty in using the arms for precise goal-directed movements and coordinated locomotion is the problems of interfacing the incoming sensory information with the issuing of the proper motor commands. Skeletal animals evolved a solution for this interfacing difficulty by employing central " representation maps " that represent the sensory and the motor information in an organization that maintains the spatial relationships of the body morphology (somatotopic representation), yet the relative size of each body part reflects the number of sensory receptors and the number of muscle groups in each of the body parts. Therefore, in our brain, this brain organization resembles a topography of a " little man " —homunculus in Latin. The implication of such topological organization is that in the central brain, (e.g., in our motor and sensory cortices) the sensory and motor activities are represented in " body parts coordinates. " This representation format likely serves as a useful " reference table " for the brain to compute feedforward motor commands for motor interaction with the external world. This computational mechanism is feasible because the number of body parts and their dynamic locations with respect to each other is constrained by the limited number of joints and the fixed configuration of the skeleton which limits the number of controlled parameters (i.e., degrees of freedom, DOFs) needed to be computed for the execution of specific movements. Implementing in the octopus a motor control mechanism that is similarly based on body parts representation would be ineffective because of the lack of fixed spatial relationships between the flexible body parts that would require an enormous computational power to calculate the feedforward commands that are needed to control the enormous number of DOFs that are required for computing the coordinated interaction of eight long and flexible arms with the external world. Indeed, the body of the octopus is not represented somatotopically in the higher motor centers (the basal lobes) in the octopus brain (Zullo et al., 2009) and as we describe below, the evolved control algorithms of the arms in goal directed movement and locomotion highlights control strategies that seem to overcome the need for central representation of …
منابع مشابه
Soft Robot Arm Inspired by the Octopus
The octopus is a marine animal whose body has no rigid structures. It has eight arms composed of a peculiar muscular structure, named a muscular hydrostat. The octopus arms provide it with both locomotion and grasping capabilities, thanks to the fact that their stiffness can change over a wide range and can be controlled through combined contractions of the muscles. The muscular hydrostat can b...
متن کاملA model-based framework to investigate morphological computation in muscular hydrostats and to design soft robotic arms
Soft Robotics is basically intended as building robots with highly compliant materials, but it is indeed more. Soft robots can safely interact with humans and with the environment and be able to adapt to different situations. These characteristics, combined with cheap materials and simple fabrication, candidate them to lead the next robotics revolution, when robots will massively move from the ...
متن کاملHow nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs.
Cephalopods such as the octopus show the most advanced behavior among invertebrates, which they accomplish with an exceptionally flexible body plan. In this review I propose that the embodied organization approach, developed by roboticists to design efficient autonomous robots, is useful for understanding the evolution and development of the efficient adaptive interaction of animals with their ...
متن کاملAn Embodied View of Octopus Neurobiology
Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape...
متن کاملThe Morphology and Adhesion Mechanism of Octopus vulgaris Suckers
The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017